metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhan-Hua Su,^a Bai-Bin Zhou,^a* Zhi-Feng Zhao^a and Seik Weng Ng^b

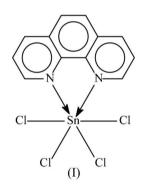
^aDepartment of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zhou_bai_bin@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.024 wR factor = 0.066 Data-to-parameter ratio = 19.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Tetrachloro(1,10-phenanthroline- $\kappa^2 N, N'$)tin(IV)

The tin(IV) atom in the title compound, $[SnCl_4(C_{12}H_8N_2)]$, is six-coordinate in an octahedral geometry.

Received 3 January 2007 Accepted 3 January 2007

Comment

The 1,10-phenanthroline adduct of Lewis-acidic stannic chloride was synthesized many years ago (Beattie *et al.*, 1963; Clark *et al.*, 1968; Ohkaku & Nakamoto, 1973; Smith & Wassef, 1975); the adduct has recently been studied theoretically (Davydova *et al.*, 2006). It has been characterized by X-ray crystallography as a 1/4 benzene solvate (Hall & Tiekink, 1996) in which the chelated Sn atom is in an octahedral environment. The title compound adopts a similar structure (Fig. 1), and its geometric parameters are similar to those reported for the benzene solvate.

Experimental

Stannic chloride (1.41 g, 4.0 mmol), copper(II) sulfate pentahydrate (0.43 g, 1.7 mmol), 1,10-phenanthroline (0.23 g, 1.15 mmol) and water (10 ml) were placed in a 20-ml Teflon-lined Parr bomb. The bomb was heated to 433 K for 6 d. Colorless block-shaped crystals were isolated from the cool solution.

Z = 4

 $D_x = 1.994 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 2.45 \text{ mm}^-$

T = 295 (2) K

Block, colorless

0.24 \times 0.16 \times 0.14 mm

Crystal data

 $\begin{bmatrix} \text{SnCl}_4(\text{C}_{12}\text{H}_8\text{N}_2) \end{bmatrix} \\ M_r = 440.69 \\ \text{Monoclinic, } P2_1/c \\ a = 7.5183 \text{ (4) A} \\ b = 19.5789 \text{ (9) A} \\ c = 10.5220 \text{ (5) A} \\ \beta = 108.556 \text{ (1)}^{\circ} \\ V = 1468.3 \text{ (1) A}^3$

Data collection

Bruker APEX-II area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.591, T_{\max} = 0.725$ 10809 measured reflections 3346 independent reflections 2930 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.017$ $\theta_{\text{max}} = 27.5^{\circ}$

© 2007 International Union of Crystallography All rights reserved

metal-organic papers

C5

C3

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0367P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	+ 0.9593P]
$wR(F^2) = 0.066$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
3346 reflections	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1		
Selected	geometric parameters	(Å,

Sn1-N1	2.234 (2)	Sn1-Cl2	2.3498 (8)
Sn1-N2	2.241 (2)	Sn1-Cl3	2.3779 (8)
Sn1-Cl1	2.3707 (7)	Sn1-Cl4	2.3970 (8)
N1-Sn1-N2	74.56 (8)	N2-Sn1-Cl4	87.26 (6)
N1-Sn1-Cl1	93.41 (6)	Cl1-Sn1-Cl2	99.40 (3)
N1-Sn1-Cl2	167.12 (6)	Cl1-Sn1-Cl3	91.32 (3)
N1-Sn1-Cl3	86.45 (6)	Cl1-Sn1-Cl4	93.48 (3)
N1-Sn1-Cl4	86.59 (6)	Cl2-Sn1-Cl3	91.86 (3)
N2-Sn1-Cl1	167.89 (6)	Cl2-Sn1-Cl4	93.95 (3)
N2-Sn1-Cl2	92.59 (6)	Cl3-Sn1-Cl4	171.76 (3)
N2-Sn1-Cl3	86.64 (6)		

°).

H atoms were placed in calculated positions (C-H 0.93 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: APEX-II Software (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

We thank the National Natural Science Foundation of China (No. 203710140 and 20671026), the Natural Science Foundation of Heilongjiang Province (ZTB2005-33), Harbin Institute of Technology and the University of Malaya for supporting this study.

Sn1 CI1 Figure 1

CI3

C1

N1

C12

N2

C10

C

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as spheres of arbitrary radius.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

C8

C9

- Beattie, I. R., McQuillan, G. P., Rule, L. & Webster, M. (1963). J. Chem. Soc. pp. 1514-1518.
- Bruker (2004). APEX-II Software (Version 7.12A) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Clark, R. J. H., Davies, A. G. & Puddephatt, R. J. (1968). J. Chem. Soc. A, pp. 1828-1834.
- Davydova, E. I., Timoshkin, A. Y., Sevastianova, T. N., Suvorov, A. V. & Frenking, G. (2006). THEOCHEM, 767, 103-111.
- Hall, V. J. & Tiekink, E. R. T. (1996). Z. Krist, 211, 247-250.
- Ohkaku, N. & Nakamoto, K. (1973). Inorg. Chem. 12, 2446-2449.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Smith, B. C. & Wassef, M. A. (1975). Egypt. J. Chem. 18, 381-383.
- Westrip, S. P. (2007). publCIF. In preparation.